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• diffusion of particles

• basic question:what is the behaviour of the concentrationn(t)?
• two possible regimes

(a) reaction limitedτdiff ≪ τreact

(b) diffusion limitedτdiff ≫ τreact

• first case⇒ classical rate eq.dn(t)
dt = −kn2(t) → n(t) ∝ t−1
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r(t)d ∼ 1

(Dt)d/2

(b) for d > 2 V(t) ∼ t ⇒ n(t) ∼ t−1

• dependence on dimensionality is caused by the physics of diffusion

• dc = 2 is the upper critical dimension for this type of reaction

• Lee, J. Phys. A27, 2633 (1994); Peliti, J. Phys. A19, L365 (1986)
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P({ni}, t)|{ni}〉 (7)

• base vectors defined as usually

|{ni}〉 =
∏

i

[ψ†(xi)]
ni |0〉 (8)

• number operator and correlation operator

n(x) =

N
∑

i=1

δ(x − xi) → ψ†(x)ψ(x)

n(x, x′) =
∑

1≤i6=j≤N

δ(x − xi)δ(x′ − xj) → ψ†(x)ψ†(x′)ψ(x)ψ(x′)
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|Φ(t)〉 = −Ĥ|Φ(t)〉 (9)

• and given together with the initial condition
|Φ(0)〉 =

∑

{ni}
P({ni},0)|{ni}〉

• usually Poisson distribution function with mean valuen0
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ĤA =

∫

dxψ†∇[v(x, t)ψ(x)] (10)

2. diffusion
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2. diffusion

ĤD = −D0

∫
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R

dxψ|Φ(0)〉

9 / 20



Casting into the path integral representation

• formal solution for|Φ(t)〉 and after some steps

〈A(t)〉 = 〈0|TA{[ψ+(t) + 1]ψ(t)})

exp(−
∫ ∞

0
Ĥ′
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〈A(t)〉 =

∫

Dψ+DψA{[ψ+(t) + 1]ψ(t)}eSreact (17)

• actionSreact is given by
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∫ ∞

0
dt

∫
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+∇2ψ +

λ0D0[2ψ
+ + (ψ+)2]ψ2} + n0

∫
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dt dx dx′ ṽ(x, t).ṽ(x′, t)df (|x − x′|) +
∫

dt dx ṽ.[−∂tv − (v.∇)v + ν0∇
2v] (20)

• any statistical quantity with respect to the concentrationand velocity
fluctuations could now be averaged with the use of weight functional

W = eSreact+SNS (21)
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• local term→ RG divergences and thermal fluctuations

• mean energy injection
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• divergences inΓv′v′ andΓv′v [Adzhemyan et al. Phys. Rev. E71, 036305

(2005)]

• divergences inΓψ+ψ, Γψ+ψψ andΓψ+ψ+ψψ

• Γψ+ψv andΓvvv′ convergent because of Galilei invariance [L. Ts.
Adzhemyan, A. N. Vasiliev, Yu. M .Pis’mak, Teor. Mat. Fiz.57, 268
(1983)]
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2δZ2Z−1

4 ,

ν = ν0Z−1
1 , u = u0Z1Z−1

2

• u = D/ν is inverse Prandtl number (ratio of thermal and momentum
diffusity)

• we want to calculate renormalization constantsZ2,Z4 (Z1,Z3 known to the
second order of perturbation scheme)

• RG functions

βg = µ
∂g
∂µ

|0, γα = µ
∂ ln Zα
∂µ

|0 (24)
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• where

αR1 = g1Sds2ǫZ−3
1

αR2 = g2Sds−2∆Z3Z−3
1

αR3 = λSds−2∆Z−1
2 Z4

s = µ/p
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Definitions of propagators and vertex factors

from the actions, (18) and (20), follows
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Results of one-loop order

• beta functions could be obtaind directly from definition

βg1 = g1(−2ǫ+ 3γ1), βg2 = (2δ + 3γ1 − γ3)

βλ = λ(2δ − γ4 + γ2), βu = u(γ1 − γ2) (27)

• and gamma functions in the explicit form (from the knowledgeof
Zi, i = 1,2,3,4)

γ1 =
g1 + g2

32π
, γ2 =

g1 + g2

8πu(1 + u)

γ3 =
(g1 + g2)

2

32πg2
, γ4 = −

λ

2π
(28)
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(b) adding random source and sinks ofA particles
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Thank you for your attention
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