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from experiments and computer simulatieassituation quite different -
depends on space dimesion

scaling arguments

(a) consided < 2, for this case diffusion is recurrent
r.m.s. displacement(t) ~ (Dt)*/? and sweeps volumeé(t) ~ r(t)d
therefora:( ) ~ number(r){t;;grtlcles IeftN (Dt)d/2
(b) ford>2 V({t)~t=nt)~t?
dependence on dimensionality is caused by the physicsfakuih
dc = 2 is the upper critical dimension for this type of reaction

Lee, J. Phys. /27, 2633 (1994); Peliti, J. Phys. 29, L365 (1986)
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(i) H(t) time evolution operator, e.g. the Liouville operatbr
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(i) the task is the evaluation of the mean value
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dynamic equation (master equation for evislyis linear in time like
Schrodinger eq.

. number of particle is changing (like in QFT)

=- suggests the second quantization method [M. Doi, J. Phys.1465

(1976)]
creation and annihilation operatatgx) and« ™ (x)
commutation relations

[ (x), 91 ()] = §(x = X)

[(x), (x)] = [ (x), T (x)] = 0
$(x)|0) =0, (0fx(x) = 0,(0j0) =1
no use ofi andh

(4)

©®)
(6)
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¢ information of state transfered to a 'quantum’ state

=> P{ni}Hl{n}) )
{ni}
¢ base vectors defined as usually
1{ni}) = [ 1" o)™ 0) (8)

e number operator and correlation operator

Z d(X — Xi) (X)¥(x)
= ) 5x=x)d(X —x) = T U (X ) (x)p(X)

1<i#j<N

7120
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o actionSey is given by
Seat = — /OO dt/dx {1/1+8t1/1 + 1/1+V(Vw) — D01/1+V2¢ +
0
MoDol2¢ + (67)4u?} + o / dxyt(x,0)  (18)
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e with V.v = 0 =-space of transverse vectors in momentum space
e actionSys for N.S. eq.

S\s = :—Zl/dt dx dx’ V(x,t).9(X', 1)d (|x — X'|) +
/dt dX V.[-0v — (V.V)V + 1o V2] (20)

e any statistical quantity with respect to the concentratind velocity
fluctuations could now be averaged with the use of weighttianal

W = eYett+Sis (21)
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mean energy injection

M|

d-1
- 5 / dkdl (K) (23)
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divergences iy« .y, Iyt gy @NAT bt
[+ gy andl'ny convergent because of Galilei invariance [L. Ts.

Adzhemyan, A. N. Vasiliev, Yu. M .Pis'mak, Teor. Mat. Fi&7, 268
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minimal substraction scheme with mass scale parameter

01 = Quop %23, O = Qeop® 2325
A= don? 22,7,
V= lloZl_l, u= Uozlzz_l

u = D/visinverse Prandtl number (ratio of thermal and momentum
diffusity)

we want to calculate renormalization constafitsZ, (Z;, Z3 known to the
second order of perturbation scheme)

RG functions

os| olnz,
= —_— o = 24
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« condition forI‘5+ " andI'R
[ )

oty 10 be UV-finite atw = 0

SIS ]
Ng,N2,n3=0

Ty o
Ptaplw=0 _
ADp? ZZ[

(25)

A
15/20



Calculation of the renormalization constants

e condition forT'R,  andI'R : to be UV-finite atw = 0

Yty Yrhtapd”
[ ]
Lyt o lw=0
YHlw ng,nz,n:
o 2 [—1+ > Oa?élaé‘fz ”w((wt)%wﬂ (25)
Ny,N2,N3=
[ ]
F(¢+)2¢2|W:O Ny g (ng,n2,nz)
ADp—2A = —Z4|1+ Z O‘RlaRz R37Y (y+)2¢2 (26)

ny,nz,n3=0
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Calculation of the renormalization constants

condition forl'R, andr'R : to be UV-finite atw = 0

Yt Ytptapy:

Lyt lw=0
Pprlw _ n N ng _(ng,nz,ng)
R DI ]

ny,nz,n3=0

r 22| w=

(yp*)%p2lw=0 Nng,No, N

MDA T —24[1+ > ofoga ;zvgwa;w?]
H M,M2,N3=0

where
ar1 = G732
are = 0SS A 2573
ars = \§s 22,174
S=u/p

(25)

(26)
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from the actions, (18) and (20), follows

VANANNNNANNN, Y SV =d (/w4 ok )

VI44+44444444444/\&/\v/\v/\J/\/ 4 <v' v> 0 =1/(-iw + v Oﬁfz)

wt I Y <yt y>, =1/(-iw+D k~2)

V, = i(6,k, +6.k)

s

[m] = = =

A
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Results of one-loop order

¢ beta functions could be obtaind directly from definition

By, = 91(—2¢ + 3y1), Bg2 = (20 + 371 — 13)
B = AM26 — va+ 72), fu = u(v1 — 72) (27)

¢ and gamma functions in the explicit form (from the knowleddge
Z|7I - 1727374)

_Ot® o Gt
=732 27 Bru(l +u)
+02)? A

g = (014 Q) _ (28)

32rg, 4T 2n
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Fixed points of RG group
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Fixed points of RG group

density decay rate(t) oc t=¢

Gaussian

6=(d-2)/2

Normal

Anomalous
Thermal

region of stability

Fixed point o
Gaussian 1
Thermal 1+ 5

e<0,0>0
0<0,2¢+35<0

Anomalous kinetic f_t% €>0,-2/3<6< —¢/3

Normal kinetics 1
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(b) adding random source and sinksfoparticles
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Thank you for your attention
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